Add like
Add dislike
Add to saved papers

Valuing Sets of Potential Transplants in a Kidney Paired Donation Network.

In kidney paired donation (KPD), incompatible donor-candidate pairs and non-directed (also known as altruistic) donors are pooled together with the aim of maximizing the total utility of transplants realized via donor exchanges. We consider a setting in which disjoint sets of potential transplants are selected at regular intervals, with fallback options available within each proposed set in the case of individual donor, candidate or match failure. We develop methods for calculating the expected utility for such sets under a realistic probability model for the KPD. Exact expected utility calculations for these sets are compared to estimates based on Monte Carlo samples of the underlying network. Models and methods are extended to include transplant candidates who join KPD with more than one incompatible donor. Microsimulations demonstrate the superiority of accounting for failure probability and fallback options, as well as candidates joining with additional donors, in terms of realized transplants and waiting time for candidates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app