Add like
Add dislike
Add to saved papers

A synthetic free fatty acid-regulated transgene switch in mammalian cells and mice.

Nucleic Acids Research 2018 October 13
Trigger-inducible transgene expression systems are utilized in biopharmaceutical manufacturing and also to enable controlled release of therapeutic agents in vivo. We considered that free fatty acids (FFAs), which are dietary components, signaling molecules and important biomarkers, would be attractive candidates as triggers for novel transgene switches with many potential applications, e.g. in future gene- and cell-based therapies. To develop such a switch, we rewired the signal pathway of human G-protein coupled receptor 40 to a chimeric promoter triggering gene expression through an increase of intracellular calcium concentration. This synthetic gene switch is responsive to physiologically relevant FFA concentrations in different mammalian cell types grown in culture or in a bioreactor, or implanted into mice. Animal recipients of microencapsulated sensor cells containing this switch exhibited significant transgene induction following consumption of dietary fat (such as Swiss cheese) or under hyperlipidaemic conditions, including obesity, diabetes and lipodystrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app