Add like
Add dislike
Add to saved papers

Magic angles and fibre stretch in arterial tissue: Insights from the linear theory.

This work is motivated by the current widespread interest in modelling the mechanical response of arterial tissue. A widely used approach within the context of anisotropic nonlinear elasticity is to use an orthotropic incompressible hyperelasticity model which, in general, involves a strain-energy density that depends on seven independent invariants. The complexity of such an approach in its full generality is daunting and so a number of simplifications have been introduced in the literature to facilitate analytical tractability. An extremely popular model of this type is where the strain energy involves only three invariants. While such models and their generalisations have been remarkably successful in capturing the main features of the mechanical response of arterial tissue, it is generally acknowledged that such simplified models must also have some drawbacks. In particular, it is intuitively clear that the correlation of such models with experiment will suffer limitations due to the restricted number of invariants considered. Our purpose here is to use the linearised theory for infinitesimal deformations to provide some guidelines for the development of a more robust nonlinear theory. The linearised theory for incompressible orthotropic materials is developed and involves six independent elastic constants. The general stress-strain law is inverted to provide an expression for the fibre stretch in terms of the stress. We examine the linearised response for simple tension in two mutually perpendicular directions corresponding to the axial and circumferential directions in the artery, obtaining an explicit expression for the fibre stretch in terms of the applied tension, fibre angle and linear elastic constants. The focus is then on determining the range of fibre orientation angles that ensure that the fibres are in tension in these simple tension tests. It is shown that the fibre stretch is positive for both simple tension tests if and only if the fibre angle is restricted to lie between two special angles called generalised magic angles. For the special case where the strain-energy function for the nonlinear model depends only on the three invariants I1 ,I4 ,I6 , it is shown that the corresponding linearised model, called the standard linear model (SLM), depends on three elastic constants and the fibre stretch is positive only in the small range of fibre angles between the classic magic angles 35.26° and 54.74°. However, when the two additional invariants I5 ,I7 are included in the nonlinear strain energy so that the corresponding linear model involves four elastic constants, it is shown that the domain of fibre angle for which the stretch is positive is much larger and that the fibre stretch is monotonic with respect to the fibre angle in this range.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app