Add like
Add dislike
Add to saved papers

Forearm wearable resistance effects on sprint kinematics and kinetics.

OBJECTIVES: Arm swing is a distinctive characteristic of sprint-running with the arms working in a contralateral manner with the legs to propel the body in a horizontal direction. The purpose of this study was to determine the acute changes in kinematics and kinetics when wearable resistance (WR) of 1kg (equivalent to ∼1% body mass) was attached to each forearm during over ground short distance (20m) maximal sprint-running.

DESIGN: Cross-sectional study.

METHODS: Twenty-two male amateur rugby athletes (19.4±0.5years; 97.0±4.8kg; 180.4±7.2cm) volunteered to participate in the study. Radar and Optojump were used to examine kinematic and kinetics between WR and unloaded sprint-running conditions.

RESULTS: No significant (p<0.05) differences were found at 2m or 5m between conditions, however, the WR condition resulted in a significant increase in 10m, 20m and 10-20m split time (all, ∼2%, small effect size) compared to the unloaded condition. Significant decreases were also found in theoretical maximum velocity (V0 ) (-1.4%, small effect size) and relative peak horizontal power production (Pmax ) (-5.5%, small effect size). Step length (2.1%, small effect size) and contact time (6.5%, medium effect size) were significantly increased, while step frequency (-4.1%, small effect size) and flight time (-5.3%, medium effect size) were significantly decreased.

CONCLUSIONS: WR forearm loading provides a movement specific overload of the arms which significantly alters step kinematics and sprint times ≥10m.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app