Add like
Add dislike
Add to saved papers

The application of convolution neural network based cell segmentation during cryopreservation.

Cryobiology 2018 September 14
For most of the cells, water permeability and plasma membrane properties play a vital role in the optimal protocol for successful cryopreservation. Measuring the water permeability of cells during subzero temperature is essential. So far, there is no perfect segmentation technique to be used for the image processing task on subzero temperature accurately. The ice formation and variable background during freezing posed a significant challenge for most of the conventional segmentation algorithms. Thus, a robust and accurate segmentation approach that can accurately extract cells from extracellular ice that surrounding the cell boundary is needed. Therefore, we propose a convolutional neural network (CNN) architecture similar to U-Net but differs from those conventionally used in computer vision to extract all the cell boundaries as they shrank in the engulfing ice. The images used was obtained from the cryo-stage microscope, and the data was validated using the Hausdorff distance, means ± standard deviation for different methods of segmentation result using the CNN model. The experimental results prove that the typical CNN model extracts cell borders contour from the background in its subzero state more coherent and effective as compared to other traditional segmentation approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app