Add like
Add dislike
Add to saved papers

Hydrochlorothiazide binding to human serum albumin induces some compactness in the molecular structure of the protein: A multi-spectroscopic and computational study.

The interaction between hydrochlorothiazide (HCTZ), a diuretic drug, with human serum albumin (HSA) was investigated by different biophysical approaches such as UV absorption, circular dichroism (CD), Fourier transform infrared (FT-IR), and fluorescence spectroscopy in 50 mM sodium phosphate buffer, pH 7.4. The results of fluorescence titration experiments revealed that HCTZ strongly quenches the intrinsic fluorescence of HSA through a static quenching mechanism. Binding constants and the number of binding sites were calculated using Stern-Volmer plots. Thermodynamic analysis of the binding data elucidated that hydrogen bonding and van der Waals interactions played the major role in the binding process. Computation of the protein surface hydrophobicity (PSH) index using 1-anilinonaphtalene-8-sulfonate indicated that considerable decrement in PSH value of the protein happened upon drug binding. The binding site of HCTZ in HSA was identified using warfarin and ibuprofen as site markers, a result confirmed by molecular docking study. The results of CD experiments showed that some alterations occurred in the structure of the protein upon ligation. Also, the results of FT-IR experiments were in good agreement with CD experiments. It looks like that both secondary and tertiary structures of HSA have been affected upon HCTZ binding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app