Add like
Add dislike
Add to saved papers

Effect of reperfusion on vascular smooth muscle reactivity in three contraction models.

Microvascular Research 2018 September 13
BACKGROUND: Ischemia and reperfusion remain inseparable elements of numerous medical procedures such as by-pass surgery, organ transplantation or other cardiology and intervention radiology. The contraction of the smooth muscle of the vessel is considered to be one of the basic components leading to impaired perfusion, an increase in the oxygen deficit of the endothelium of the vessel, and subsequently also to tissues vascularized by the vessel. Main aim of this study was to evaluate the effect of ischemia and reperfusion on vascular smooth muscle cells stimulated pharmacologically with mastoparan-7 (direct G-protein activator) in comparison to stimulation of G-protein coupled receptor agonist - phenylephrine, and direct calcium channel activator - Bay K8644.

MATERIAL AND METHODS: Experiments were performed on isolated and perfused tail artery of Wistar rats. Contraction force in our model was measured by increased level of perfusion pressure with a constant flow.

RESULTS: Concentration-response curves obtained for phenylephrine, mastoparan-7 and Bay K8644 presented a sigmoidal relation. Ischemia induced hyporreactivity of vessels, whereas during reperfusion the significant time related hyperreactivity for phenylephrine and mastoparan-7 only but not for Bay K8644. These reactions were secondary to the modulation of calcium influx from intra- and extracellular calcium stores.

CONCLUSIONS: Results of our experiments suggest that mastoparan-7 significantly induces contraction of vascular smooth muscle cells not only for controls but in the presence of ischemia and reperfusion too. Potential therapeutic applications of the observed reactions are important. They may include regenerative processes within the nervous system, studies on the improvement of blood flow within the microcirculation, or antimicrobial activity. Modulation of the G protein-phospholipase C response may also be an interesting point of action of future drugs modifying the response to stimulation during ischemia in particular, such activities could take place during the transport of organs for transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app