Add like
Add dislike
Add to saved papers

Review of structured light in diffuse optical imaging.

Diffuse optical imaging probes deep living tissue enabling structural, functional, metabolic, and molecular imaging. Recently, due to the availability of spatial light modulators, wide-field quantitative diffuse optical techniques have been implemented, which benefit greatly from structured light methodologies. Such implementations facilitate the quantification and characterization of depth-resolved optical and physiological properties of thick and deep tissue at fast acquisition speeds. We summarize the current state of work and applications in the three main techniques leveraging structured light: spatial frequency-domain imaging, optical tomography, and single-pixel imaging. The theory, measurement, and analysis of spatial frequency-domain imaging are described. Then, advanced theories, processing, and imaging systems are summarized. Preclinical and clinical applications on physiological measurements for guidance and diagnosis are summarized. General theory and method development of tomographic approaches as well as applications including fluorescence molecular tomography are introduced. Lastly, recent developments of single-pixel imaging methodologies and applications are reviewed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app