JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

The clinical features, underlying immunology, and treatment of autoantibody-mediated movement disorders.

An increasing number of movement disorders are associated with autoantibodies. Many of these autoantibodies target the extracellular domain of neuronal surface proteins and associate with highly specific phenotypes, suggesting they have pathogenic potential. Below, we describe the phenotypes associated with some of these commoner autoantibody-mediated movement disorders, and outline increasingly well-established mechanisms of autoantibody pathogenicity which include antigen downregulation and complement fixation. Despite these advances, and the increasingly robust evidence for improved clinical outcomes with early escalation of immunotherapies, the underlying cellular immunology of these conditions has received little attention. Therefore, here, we outline the likely roles of T cells and B cells in the generation of autoantibodies, and reflect on how these may guide both current immunotherapy regimes and our future understanding of precision medicine in the field. In addition, we summarise potential mechanisms by which these peripherally-driven immune responses may reach the central nervous system. We integrate this with the immunologically-relevant clinical observations of preceding infections, tumours and human leucocyte antigen-associations to provide an overview of the therapeutically-relevant underlying adaptive immunology in the autoantibody-mediated movement disorders. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app