Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CD69 prevents PLZF hi innate precursors from prematurely exiting the thymus and aborting NKT2 cell differentiation.

Nature Communications 2018 September 15
While CD69 may regulate thymocyte egress by inhibiting S1P1 expression, CD69 expression is not thought to be required for normal thymocyte development. Here we show that CD69 is in fact specifically required for the differentiation of mature NKT2 cells, which do not themselves express CD69. Mechanistically, CD69 expression is required on CD24+ PLZFhi innate precursors for their retention in the thymus and completion of their differentiation into mature NKT2 cells. By contrast, CD69-deficient CD24+ PLZFhi innate precursors express S1P1 and prematurely exit the thymus, while S1P1 inhibitor treatment of CD69-deficient mice retains CD24+ PLZFhi innate precursors in the thymus and restores NKT2 cell differentiation. Thus, CD69 prevents S1P1 expression on CD24+ PLZFhi innate precursor cells from aborting NKT2 differentiation in the thymus. This study reveals the importance of CD69 to prolong the thymic residency time of developing immature precursors for proper differentiation of a T cell subset.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app