Add like
Add dislike
Add to saved papers

Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents.

Treatment of textile dyeing industry (TDI) effluent was investigated using hydrodynamic cavitation (HC) and in combination with advanced oxidation reagents such as air, oxygen, ozone and Fenton's reagent. Slit venturi was used as the cavitating device in HC reactor. The effects of process parameters such as inlet pressure, cavitation number, effluent concentration, ozone and oxygen flow rate, loading of H2 O2 and Fenton's reagent on the extent of reduction of TOC, COD and color were studied. Efficiency of the hybrid treatment processes were evaluated on the basis of their synergetic coefficient. It was observed that almost 17% TOC, 12% COD, and 25% color removal was obtained using HC alone at inlet pressure of 5bar and pH of 6.8. The rate of reduction of TOC and COD decreased with dilution of the samples. HC in combination with Fenton's reagent (FeSO4 ·7H2 O:H2 O2 as 1:5) was most effective with reduction of 48%TOC and 38% COD in 15min and 120min respectively with almost complete decolorization (98%) of the TDI effluent. Whereas HC in combination with oxygen (2L/min) and ozone (3g/h) produced reduction of 48% TOC, 33% COD, 62% decolorization and 48% TOC, 23% COD, 88%, decolorization of TDI effluent respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app