Add like
Add dislike
Add to saved papers

Temperature susceptibility of a mesophilic anaerobic membrane bioreactor treating saline phenol-containing wastewater.

Chemosphere 2018 December
This study examined the temperature susceptibility of a continuous-flow lab-scale anaerobic membrane bioreactor (AnMBR) to temperature shifts from 35 °C to 55 °C and its bioconversion robustness treating synthetic phenolic wastewater at 16 gNa+. L-1 . During the experiment, the mesophilic reactor was subjected to stepwise temperature increases by 5 °C. The phenol conversion rates of the AnMBR decreased from 3.16 at 35 °C to 2.10 mgPh. gVSS-1. d-1 at 45 °C, and further decreased to 1.63 mgPh. gVSS-1. d-1 at 50 °C. At 55 °C, phenol conversion rate stabilized at 1.53 mgPh. gVSS-1. d-1 whereas COD removal efficiency was 38% compared to 95.5% at 45 °C and 99.8% at 35 °C. Interestingly, it was found that the phenol degradation process was less susceptible for the upward temperature shifts than the methanogenic process. The temperature increase implied twenty-one operational taxonomic units from the reactor's microbial community with significant differential abundance between mesophilic and thermophilic operation, and eleven of them are known to be involved in aromatic compounds degradation. Reaching the upper-temperature limits for mesophilic operation was associated with the decrease in microbial abundance of the phyla Firmicutes and Proteobacteria, which are linked to syntrophic phenol degradation. It was also found that the particle size decreased from 89.4 μm at 35 °C to 21.0 μm at 55 °C. The accumulation of small particles and higher content of soluble microbial protein-like substances led to increased transmembrane pressure which negatively affected the filtration performance. Our findings indicated that at high salinity a mesophilic AnMBR can tolerate a temperature up to 45 °C without being limited in the phenol conversion capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app