Add like
Add dislike
Add to saved papers

Using Noble Gases to Assess the Ocean's Carbon Pumps.

Natural mechanisms in the ocean, both physical and biological, concentrate carbon in the deep ocean, resulting in lower atmospheric carbon dioxide. The signals of these carbon pumps overlap to create the observed carbon distribution in the ocean, making the individual impact of each pump difficult to disentangle. Noble gases have the potential to directly quantify the physical carbon solubility pump and to indirectly improve estimates of the biological organic carbon pump. Noble gases are biologically inert, can be precisely measured, and span a range of physical properties. We present dissolved neon, argon, and krypton data spanning the Atlantic, Southern, Pacific, and Arctic Oceans. Comparisons between deep-ocean observations and models of varying complexity enable the rates of processes that control the carbon solubility pump to be quantified and thus provide an important metric for ocean model skill. Noble gases also provide a powerful means of assessing air-sea gas exchange parameterizations. Expected final online publication date for the Annual Review of Marine Science Volume 11 is January 3, 2019. Please see https://www.annualreviews.org/page/journal/pubdates for revised estimates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app