Add like
Add dislike
Add to saved papers

An environmentally friendly method for the enantioseparation and determination of benalaxyl in tobacco and soil by ultra-performance convergence chromatography with tandem mass spectrometry.

For the purpose of chiral separation and determination of benalaxyl enantiomers in tobacco and soil, we developed a rapid, green, and sensitive method using ultra-performance convergence chromatography with tandem mass spectrometry. The samples were extracted and purified by the quick, easy, cheap, effective, rugged, and safe method before injection. The baseline separation was obtained on a chiral column in 5 min with carbon dioxide and ethanol as mobile phase. Separation parameters were optimized for the best separation efficiency. Under optimal conditions, the recoveries of both enantiomers were 77.1-98.4% with relative standard deviations <5.0% at spiked level of 0.1, 2.0, and 5.0 mg/kg in two matrices. Good coefficients of determination were achieved over the concentration range of 10-250 ng/mL. The limit of detection and the limit of quantification for all enantiomers ranged from 0.43 to 0.72 μg/kg and from 1.25 to 2.15 μg/kg, respectively. The results show that ultra-performance convergence chromatography with tandem mass spectrometry provides a reliable, green, and rapid method for the separation and determination of benalaxyl enantiomers in tobacco and soil. This method has important theoretical significance for studying the enantioselectivity and bioactivity of benalaxyl in the environment and in organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app