Add like
Add dislike
Add to saved papers

Increased amygdalar metabotropic glutamate receptor 7 mRNA in a genetic mouse model of impaired fear extinction.

Psychopharmacology 2018 September 14
RATIONALE: Post-traumatic stress disorder (PTSD) is a devastating anxiety-related disorder which develops subsequent to a severe psychologically traumatic event. Only ~ 9% of people who experience such a trauma develop PTSD. It is clear that a number of factors, including genetics, influence whether an individual will develop PTSD subsequent to a trauma. The 129S1/SvImJ (S1) inbred mouse strain displays poor fear extinction and may be useful to model this specific aspect of PTSD. The metabotropic glutamate receptor 7 (mGlu7 receptor) has previously been shown to be involved in cognitive processes and anxiety-like behaviour placing it in a key position to regulate fear extinction processes. We sought to compare mGlu7 receptor mRNA levels in the S1 strain with those in the robustly extinguishing C57BL/6J (B6) inbred strain using in situ hybridisation (ISH) in three brain regions associated with fear extinction: the amygdala, hippocampus and prefrontal cortex (PFC).

RESULTS: Compared to the B6 strain, S1 mice had increased mGlu7 receptor mRNA levels in the lateral amygdala (LA) and basolateral amygdala (BLA) subdivisions. An increase was also seen in the hippocampal CA1 and CA3 subregions of S1 mice. No difference in mGlu7 receptor levels were seen in the central nucleus (CeA) of the amygdala, dentate gyrus (DG) of the hippocampus or prefrontal cortex.

CONCLUSIONS: These data show altered mGlu7 receptor expression in key brain regions associated with fear extinction in two different inbred mouse strains which differ markedly in their fear extinction behaviour. Altered mGlu7 receptor levels may contribute to the deficit fear extinction processes seen in fear extinction in the S1 strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app