Add like
Add dislike
Add to saved papers

Trpm2 Ablation Accelerates Protein Aggregation by Impaired ADPR and Autophagic Clearance in the Brain.

Molecular Neurobiology 2018 September 14
TRPM2 a cation channel is also known to work as an enzyme that hydrolyzes highly reactive, neurotoxic ADP-ribose (ADPR). Although ADPR is hydrolyzed by NUT9 pyrophosphatase in major organs, the enzyme is defective in the brain. The present study questions the role of TRPM2 in the catabolism of ADPR in the brain. Genetic ablation of Trpm2 results in the disruption of ADPR catabolism that leads to the accumulation of ADPR and reduction in AMP. Trpm2-/- mice elicit the reduction in autophagosome formation in the hippocampus. Trpm2-/- mice also show aggregations of proteins in the hippocampus, aberrant structural changes and neuronal connections in synapses, and neuronal degeneration. Trpm2-/- mice exhibit learning and memory impairment, enhanced neuronal intrinsic excitability, and imbalanced synaptic transmission. These results respond to long-unanswered questions regarding the potential role of the enzymatic function of TRPM2 in the brain, whose dysfunction evokes protein aggregation. In addition, the present finding answers to the conflicting reports such as neuroprotective or neurodegenerative phenotypes observed in Trpm2-/- mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app