Add like
Add dislike
Add to saved papers

Mercury ion-DNA specificity triggers a distinctive photoluminescence depression in organic semiconductor probes guided with a thymine-rich oligonucleotide sequence.

Nanoscale 2018 September 28
DNA strands have been recently found to play a role in crystallizing organic semiconductors as a substitute for conventional surfactants. Such DNA-guided organic semiconductor particles possessed the recognition ability to complementary target DNAs, resulting in "enhanced luminescence" due to the lesser degree of non-radiative dissipation. Apart from this, in this study we developed selective recognition of mercury ions by utilizing DNA probes having ion-specific thymine-rich motifs. Strikingly, the specific ion-DNA interaction triggered rather distinctive "depressed luminescence" emitting from the particles. The mercury ions were found to be present both at the surface and the inner regions, which were discovered to relate to the drastic morphological distortion of the particles as evidenced by elemental, electron microscopy, and confocal fluorescence microscopy analyses. This novel phenomenon discovered would expand the technological values of organic semiconductors conjugated with oligonucleotides toward a wider range of target-specific applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app