JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Somatosensory responses to nothing: An MEG study of expectations during omission of tactile stimulations.

NeuroImage 2019 January 2
The brain builds up expectations to future events based on the patterns of past events. This function has been studied extensively in the auditory and visual domains using various oddball paradigms, but only little exploration of this phenomenon has been done in the somatosensory domain. In this study, we explore how expectations of somatosensory stimulations are established and expressed in neural activity as measured with magnetoencephalography. Using tactile stimulations to the index finger, we compared conditions with actual stimulation to conditions with omitted stimulations, both of which were either expected or unexpected. Our results show that when a stimulation is expected but omitted, a time-locked response occurs ∼135 ms subsequent to the expected stimulation. This somatosensory response to "nothing" was source localized to the secondary somatosensory cortex and to the insula. This provides novel evidence of the capability of the brain of millisecond time-keeping of somatosensory patterns across intervals of 3000 ms. Our results also show that when stimuli are repeated and expectations are established, there is associated activity in the theta and beta bands. These theta and beta band expressions of expectation were localized to the primary somatosensory area, inferior parietal cortex and cerebellum. Furthermore, there was gamma band activity in the right insula for the first stimulation after an omission, which indicates the detection of a new stimulation event after an expected pattern has been broken. Finally, our results show that cerebellum play a crucial role in predicting upcoming stimulation and in predicting when stimulation may begin again.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app