Add like
Add dislike
Add to saved papers

Self-similarity and multifractality in human brain activity: A wavelet-based analysis of scale-free brain dynamics.

BACKGROUND: The temporal structure of macroscopic brain activity displays both oscillatory and scale-free dynamics. While the functional relevance of neural oscillations has been largely investigated, both the nature and the role of scale-free dynamics in brain processing have been disputed.

NEW METHOD: Here, we offer a novel method to rigorously enrich the characterization of scale-free brain activity using a robust wavelet-based assessment of self-similarity and multifractality. For this, we analyzed human brain activity recorded with magnetoencephalography (MEG) while participants were at rest or performing a visual motion discrimination task.

RESULTS: First, we report consistent infraslow (from 0.1 to 1.5 Hz) scale-free dynamics (i.e., self-similarity and multifractality) in resting-state and task data. Second, we observed a fronto-occipital gradient of self-similarity reminiscent of the known hierarchy of temporal scales from sensory to higher-order cortices; the anatomical gradient was more pronounced in task than in rest. Third, we observed a significant increase of multifractality during task as compared to rest. Additionally, the decrease in self-similarity and the increase in multifractality from rest to task were negatively correlated in regions involved in the task, suggesting a shift from structured global temporal dynamics in resting-state to locally bursty and non Gaussian scale-free structures during task.

COMPARISON WITH EXISTING METHOD(S): We showed that the wavelet leader based multifractal approach extends power spectrum estimation methods in the way of characterizing finely scale-free brain dynamics.

CONCLUSIONS: Altogether, our approach provides novel fine-grained characterizations of scale-free dynamics in human brain activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app