Add like
Add dislike
Add to saved papers

Design of Ciprofloxacin-Loaded Nano-and Microcomposite Particles for Dry Powder Inhaler Formulations: Preparation, Invitro Characterization and Antimicrobial Efficacy.

In this study, ciprofloxacin hydrochloride (CIP)-loaded poly-ε-caprolactone (PCL) nanoparticles were prepared for pulmonary administration. CIP-loaded PCL nanoparticles were prepared by solid-in-oil-in-water (s/o/w) emulsion solvent evaporation method and the effects of various formulation parameters on the physicochemical properties of the nanoparticles were investigated. PCL nanoparticles showed spherical shapes with particle sizes around 143-489 nm. Encapsulation efficiency was found to be very low because of water-solubility properties of CIP. However, surface modification of nanoparticles with chitosan caused an increase in the encapsulation efficiency of nanoparticles. At drug release study, CIP-loaded PCL nanoparticles showed initial burst effect for 4 h and then continuously released for 72 h. Nanocomposite microparticles containing CIP-loaded PCL nanoparticles were prepared freeze-drying method and mannitol was used as carrier material. Tapped density and MMADt results show that nanocomposite microparticles have suitable aerodynamic properties for pulmonary administration. Antimicrobial efficacy investigations showed that CIP-encapsulated PCL nanoparticles and nanocomposite microparticles inhibited the growth of bacteria. Also when the antimicrobial activity of the nanoparticles at the beginning and at the sixth month was examined, it was found that the structure of the particulate system was still preserved. These results indicated that nanocomposite microparticles containing CIP-loaded PCL nanoparticles can be used for pulmonary delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app