Add like
Add dislike
Add to saved papers

Precision DEER Distances from Spin-Label Ensemble Refinement.

Double electron-electron resonance (DEER) experiments probe nanometer-scale distances in spin-labeled proteins and nucleic acids. Rotamer libraries of the covalently attached spin-labels help reduce position uncertainties. Here we show that rotamer reweighting is essential for precision distance measurements, making it possible to resolve Ångstrom-scale domain motions. We analyze extensive DEER measurements on the three N-terminal polypeptide transport-associated (POTRA) domains of the outer membrane protein Omp85. Using the "Bayesian inference of ensembles" maximum-entropy method, we extract rotamer weights from the DEER measurements. Small weight changes suffice to eliminate otherwise significant discrepancies between experiments and model and unmask 1-3 Å domain motions relative to the crystal structure. Rotamer-weight refinement is a simple yet powerful tool for precision distance measurements that should be broadly applicable to label-based measurements including DEER, paramagnetic relaxation enhancement, and fluorescence resonance energy transfer (FRET).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app