Add like
Add dislike
Add to saved papers

Blockade of Glutamate Receptors within the Prelimbic Cortex Attenuate Concentration of Excitatory Amino Acids in the Morphine Self-administration in Rats.

Background: The attitude of research on addiction has been done on the key role of glutamate. As a regard, the prelimbic cortex (PrL) has an important role in addiction, learning, and memory. We tried to investigate the level of glutamate and aspartate concentration after glutamate receptors blockade in this region in the morphine-addicted rats.

Materials and Methods: In this study, we examined the effects of local infusion of the N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonists, 2-amino-5-phosphonovaleric acid (AP5), and 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), into the PrL cortex on the level of excitatory amino acids (EAAs) and glycine. After 11 days of self-administration, the prelimbic area of the brain was taken out, and the EAAs and glycine concentration was measured by high-performance liquid chromatography.

Results: Morphine resulted in the significant increase in the EAAs concentration within this area ( P ≤ 0.001). Microinjection of AP5 into this region before using of morphine significantly decreased the morphine-induced glutamate and aspartate concentration ( P ≤ 0.001). CNQX had the same effect and significantly reduced the EAAs concentration compared to the morphine group ( P ≤ 0.001). In addition, microinjection of AP5 and CNQX simultaneously increased glycine concentration ( P ≤ 0.001).

Conclusions: These results show that morphine stimulates the EAAs release in the prelimbic area. It seems that microinjection of AP5 or CNQX in this region is effective in reducing morphine-induced EAA. It is suggested that EAA transmission in the PrL cortex may be a possible target for treatment of morphine addiction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app