Add like
Add dislike
Add to saved papers

Human mesenchymal stem cells attenuate hyperoxia-induced lung injury through inhibition of the renin-angiotensin system in newborn rats.

Hyperoxia induces activation of the renin-angiotensin system (RAS) in newborn rat lungs. This study investigated the therapeutic effects of human mesenchymal stem cells (MSCs) on lung development and RAS expression in neonatal rats exposed to hyperoxia. Sprague-Dawley rat pups were exposed to either room air (RA) or oxygen-enriched atmosphere (O2 ) treatment from postnatal days 1 to 14. Human MSCs (1 × 105 cells) in 0.03 mL of normal saline (NS) were administered intratracheally on postnatal day 5, and four study groups were obtained: RA + NS, RA + MSCs, O2 + NS, and O2 + MSCs. The lungs were excised for cytokine, expression of RAS components, and histological analyses on postnatal day 14. Body and lung weights were significantly lower in rats reared in hyperoxia than in those reared in RA. The rats reared in hyperoxia and treated with NS exhibited significantly higher tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels, mean linear intercept (MLI), and expression of angiotensin II, angiotensin II type 1 receptor, and angiotensin-converting enzyme than those reared in RA and treated with NS or MSCs did. Administering MSC to hyperoxia-exposed rats reduced TNF-α and IL-6 levels, improved MLI, and decreased expression of angiotensin II, angiotensin II type 1 receptor, and angiotensin-converting enzyme to normoxic levels. Thus, human MSCs attenuated hyperoxia-induced lung injury through inhibition of the RAS in newborn rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app