Add like
Add dislike
Add to saved papers

Azilsartan attenuates cardiac damage caused by high salt intake through the downregulation of the cardiac (pro)renin receptor and its downstream signals in spontaneously hypertensive rats.

We examined whether the stimulation of the angiotensin II AT1 receptor increases the expression of the cardiac (pro)renin receptor ((P)RR) and its downstream signals and whether the blockade of the angiotensin II AT1 receptor by azilsartan decreases the expression of the cardiac (P)RR and its signaling in spontaneously hypertensive rats (SHRs) with a high-salt intake. Rats received normal-salt (0.9%) chow, high-salt (8.9%) chow, normal-salt chow with 1 mg/day of azilsartan, and high-salt chow with 1 mg/day of azilsartan from 6 to 12 weeks of age. Rats with normal-salt chow were administered 100 ng/kg/min of angiotensin II by osmotic minipump from 6 to 12 weeks of age. A high-salt diet and angiotensin II significantly increased the systolic blood pressure; overexpressed cardiac (P)RR, phosphorylated (p)-ERK1/2, p-p38MAPK, p-HSP27, and TGF-ß1; enhanced cardiac interstitial and perivascular fibrosis, cardiomyocyte size, interventricular septum (IVS) thickness, and left ventricular (LV) end-diastolic dimension; and decreased LV fractional shortening. Azilsartan decreased systolic blood pressure, cardiac expressions of (P)RR, p-ERK1/2, p-p38MAPK, p-HSP27, and TGF-ß1, cardiac interstitial and perivascular fibrosis, cardiomyocyte size, and LV diastolic dimension, and improved LV fractional shortening. In conclusion, azilsartan attenuates cardiac damage caused by high salt intake through the downregulation of the cardiac (pro)renin receptor and its downstream signals in SHRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app