Add like
Add dislike
Add to saved papers

Evolutionary Many-Objective Algorithm Using Decomposition-Based Dominance Relationship.

Decomposition-based evolutionary algorithms have shown great potential in many-objective optimization. However, the lack of theoretical studies on decomposition methods has hindered their further development and application. In this paper, we first theoretically prove that weight sum, Tchebycheff, and penalty boundary intersection decomposition methods are essentially interconnected. Inspired by this, we further show that highly customized dominance relationship can be derived from decomposition for any given decomposition vector. A new evolutionary algorithm is then proposed by applying the customized dominance relationship with adaptive strategy to each subpopulation of multiobjective to multiobjective framework. Experiments are conducted to compare the proposed algorithm with five state-of-the-art decomposition-based evolutionary algorithms on a set of well-known scaled many-objective test problems with 5 to 15 objectives. Simulation results have shown that the proposed algorithm can make better use of the decomposition vectors to achieve better performance. Further investigations on unscaled many-objective test problems verify the robust and generality of the proposed algorithm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app