Add like
Add dislike
Add to saved papers

Weakly-Supervised Learning of Metric Aggregations for Deformable Image Registration.

Deformable registration has been one of the pillars of biomedical image computing. Conventional approaches refer to the definition of a similarity criterion that, once endowed with a deformation model and a smoothness constraint, determines the optimal transformation to align two given images. The definition of this metric function is among the most critical aspects of the registration process. We argue that incorporating semantic information (in the form of anatomical segmentation maps) into the registration process will further improve the accuracy of the results. In this paper, we propose a novel weakly supervised approach to learn domain specific aggregations of conventional metrics using anatomical segmentations. This combination is learned using latent structured support vector machines (LSSVM). The learned matching criterion is integrated within a metric free optimization framework based on graphical models, resulting in a multi-metric algorithm endowed with a spatially varying similarity metric function conditioned on the anatomical structures. We provide extensive evaluation on three different datasets of CT and MRI images, showing that learned multi-metric registration outperforms single-metric approaches based on conventional similarity measures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app