Add like
Add dislike
Add to saved papers

Diffusion-reaction kinetics of microfluidic amperometric biosensors.

Lab on a Chip 2018 October 10
Amperometric biosensors are widely applied for rapid biomarker detection in physiological and environmental samples. The dynamics and linearity of the current signal, however, are only partially understood. This study investigates the diffusion-reaction kinetics of amperometric biosensing using a self-assembled monolayer (SAM) based biosensor for bacterial 16S rRNA. A numerical model is developed to optimize the chamber dimensions and elucidate the concentration dependences of the biosensor. The results revealed that depletion of substrates associated with the chamber dimension can limit the current signal in a target concentration dependent manner. This study provides practical guidelines in the design and interpretation of microfluidic amperometric biosensors for biochemical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app