Add like
Add dislike
Add to saved papers

The description of two new species of Chloromyxum from skates in the Argentine Sea reveals that a limited geographic host distribution causes phylogenetic lineage separation of myxozoans in Chondrichthyes.

During a survey on the myxosporean fauna of Rajiformes from the Atlantic coast of Argentina, in waters off Buenos Aires Province (34°-42°S; 53°-62°W), the gall bladders of 217 specimens belonging to seven species of skates, representatives of two families, were examined. As a result, three species of Chloromyxum Mingazzini, 1890, namely C. atlantoraji n. sp., C. zearaji n. sp. and C. riorajum Azevedo, Casal, Garcia, Matos, Teles-Grilo and Matos, 2009 were found infecting three endemic host species, the spotback skate Atlantoraja castelnaui (Arhynchobatidae), the yellownose skate Zearaja chilensis (Rajidae) and the Rio skate Rioraja agassizii (Arhynchobatidae), respectively. These species were described based on myxospore morphology and morphometry characterization, as well as by providing their small subunit ribosomal DNA (SSU rDNA) sequences. The SSU rDNA-based phylogenetic analyses showed that these three species constituted a well-established monophyletic subclade within the marine Chloromyxum clade, while branches subtending the other Chloromyxum species were poorly resolved or unresolved, independently of the host taxonomic identities (Carchariniformes, Myliobatiformes, Orectolobiformes, Pristiophoriformes, Rajiformes, Squaliformes and Torpediniformes) and/or host geographic distribution (Atlantic coast of Portugal, Atlantic coast of the USA, Australian waters or Mediterranean Sea). The possible causes of these discrepancies are discussed, providing new insights into the phylogeny of the marine Chloromyxum clade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app