Add like
Add dislike
Add to saved papers

Neuregulin-1β Plays a Neuroprotective Role by Inhibiting the Cdk5 Signaling Pathway after Cerebral Ischemia-Reperfusion Injury in Rats.

This study investigated the effects of neuregulin-1β (NRG1β) after middle cerebral artery occlusion/reperfusion (MCAO/R) in rats to evaluate whether they occur via the cyclin-dependent kinase (Cdk)5 signaling pathway. One hundred adult male Wistar rats were randomly divided into sham, MCAO/R, treatment (NRG1β), inhibitor (roscovitine; Ros), and inhibitor + treatment (Ros + NRG1β) groups. The MCAO/R model was established using the intraluminal thread method. The neurobehavioral function was evaluated by the modified neurological severity score (mNSS). The cerebral infarction volume (CIV) was measured by triphenyl tetrazolium chloride (TTC) staining. Morphological changes were observed by hematoxylin-eosin (HE) staining. The apoptotic cell index (ACI) was detected by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Immunohistochemistry and Western blotting were performed to detect the expression of calpain 1, p35/p25 (regulatory binding partners of Cdk5), Cdk5, and p-Tau in neurons. The neuronal morphology in the MCAO/R, NRG1β, Ros + NRG1β, and Ros groups differed compared to the sham group; the mNSS, CIV, ACI, and the expression of calpain 1, p35/p25, Cdk5, and p-Tau were significantly increased in all four groups (P < 0.05). In the NRG1β, Ros and Ros + NRG1β groups, the neuronal morphology was significantly improved compared to the MCAO/R group, as were the mNSS, CIV, and ACI. The levels of calpain 1, p35/p25, and p-Tau were decreased compared with the MCAO/R group (P < 0.05), while the Cdk5 expression was not significantly different (P > 0.05). NRG1β may exert neuroprotective effects by inhibiting the expression of calpain 1, p35/p25, and p-Tau after cerebral ischemia-reperfusion injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app