Add like
Add dislike
Add to saved papers

Revisiting the role of cholesterol in regulating the pore-formation mechanism of Vibrio cholerae cytolysin, a membrane-damaging ß-barrel pore-forming toxin.

Biochemical Journal 2018 September 12
Vibrio cholerae cytolysin (VCC) is a ß-barrel pore-forming toxin with potent membrane-damaging cell-killing activity. Previous studies employing the model membranes of lipid vesicles (liposomes) have shown that pore formation by VCC requires presence of cholesterol in the liposome membranes. However, exact role of cholesterol in the mode of action of VCC still remains unclear. Most importantly, implication of cholesterol, if any, in regulating the pore-formation mechanism of VCC in the biomembranes of eukaryotic cells remains unexplored. Here we show that the presence of cholesterol promotes interaction of VCC with the membrane lipid bilayer, when non-lipid-dependent interactions are absent. However, in the case of biomembranes of human erythrocytes, where accessory interactions are available, cholesterol appears to play a less critical role in the binding step. Nevertheless, in the absence of an optimal level of membrane cholesterol in the human erythrocytes, membrane-bound fraction of the toxin remains trapped in the form of abortive oligomeric assembly, devoid of functional pore-forming activity. Our study also shows that VCC exhibits a prominent propensity to associate with the cholesterol-rich membrane micro-domains of human erythrocytes. Interestingly, mutation of the cholesterol-binding ability of VCC does not block association with the cholesterol-rich membrane micro-domains on human erythrocytes. Based on these results, we propose that the specific cholesterol-binding ability of VCC does not appear to dictate its association with the cholesterol-rich micro-domains on human erythrocytes. Rather, targeting of VCC toward the membrane micro-domains of human erythrocytes possibly acts to facilitate the cholesterol-dependent pore-formation mechanism of the toxin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app