Add like
Add dislike
Add to saved papers

Evaluation of androgen assay results using a curated Hershberger database.

A set of 39 reference chemicals with reproducible androgen pathway effects in vivo, identified in the companion manuscript [1], were used to interrogate the performance of the ToxCast/Tox 21 androgen receptor (AR) model based on 11 high throughput assays. Cytotoxicity data and specificity confirmation assays were used to distinguish assay loss-of-function from true antagonistic signaling suppression. Overall agreement was 66% (19/29), with ten additional inconclusive chemicals. Most discrepancies were explained using in vitro to in vivo extrapolation to estimate equivalent administered doses. The AR model had 100% positive predictive value for the in vivo response, i.e. there were no false positives, and chemicals with conclusive AR model results (agonist or antagonist) were consistently positive in vivo. Considering the lack of reproducibility of the in vivo Hershberger assay, the in vitro AR model may better predict specific AR interaction and can rapidly and cost-effectively screen thousands of chemicals without using animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app