Add like
Add dislike
Add to saved papers

Nature of long-range evolutionary constraint in enzymes: insights from comparison to pseudoenzymes with similar structures.

Enzymes are known to fine-tune their sequences to optimize catalytic function, yet quantitative evolutionary design principles of enzymes remain elusive on the proteomic scale. Recently, it was found that the catalytic site in enzymes induces long-range evolutionary constraint, where even sites distant to the catalytic site are more conserved than expected. Given that protein-fold usage is generally different between enzymes and non-enzymes, it remains an open question to what extent this long-range evolutionary constraint in enzymes is dictated, either directly or indirectly, by the special three-dimensional structure of the enzyme. To investigate this question, we have compared evolutionary properties of enzymes with those of counterpart pseudoenzymes that share the same protein fold but are catalytically inactive. We found that the long-range evolutionary constraint observed in enzymes is significantly reduced in pseudoenzyme counterparts, despite very high structural similarity (∼1.5Å RMSD on average). Furthermore, this significant reduction in long-range evolutionary constraint is observed even in pseudoenzyme counterparts which retain the ligand-binding ability of enzymes. Finally, the distance between the site that induces the highest gradient of sequence conservation and the pseudocatalytic site in pseudoenzymes is significantly larger than the corresponding distance in enzymes. Taken together, our results suggest that the long-range evolutionary constraint in enzymes is induced mainly by the presence of the catalytic site rather than by the special three-dimensional structure of the enzyme, and that such long-range evolutionary constraint in enzymes depends mainly on the catalytic function of the active site rather than on the ligand-binding ability of the enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app