Add like
Add dislike
Add to saved papers

Electrical half-wave rectification at ferroelectric domain walls.

Nature Nanotechnology 2018 September 11
Domain walls in ferroelectric semiconductors show promise as multifunctional two-dimensional elements for next-generation nanotechnology. Electric fields, for example, can control the direct-current resistance and reversibly switch between insulating and conductive domain-wall states, enabling elementary electronic devices such as gates and transistors. To facilitate electrical signal processing and transformation at the domain-wall level, however, an expansion into the realm of alternating-current technology is required. Here, we demonstrate diode-like alternating-to-direct current conversion based on neutral ferroelectric domain walls in ErMnO3 . By combining scanning probe and dielectric spectroscopy, we show that the rectification occurs at the tip-wall contact for frequencies at which the walls are effectively pinned. Using density functional theory, we attribute the responsible transport behaviour at the neutral walls to an accumulation of oxygen defects. The practical frequency regime and magnitude of the direct current output are controlled by the bulk conductivity, establishing electrode-wall junctions as versatile atomic-scale diodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app