Add like
Add dislike
Add to saved papers

Moderate developmental alcohol exposure reduces repetitive alternation in a zebrafish model of fetal alcohol spectrum disorders.

The damaging effects of alcohol on a developing fetus are well known and cause a range of conditions known as fetal alcohol spectrum disorder (FASD). High levels of alcohol exposure lead to physical deformity and severe cognitive deficits, but more moderate exposure leads to a range of subtle cognitive effects such as reduced social behavior, higher propensity to develop addictions, and reduced spatial working memory. Previous studies have demonstrated that following exposure to relatively low levels of ethanol during early brain development (equivalent in humans to moderate exposure) zebrafish display a range of social and behavioral differences. Here, our aim was to test the hypothesis that moderate developmental ethanol exposure would affect aspects of learning and memory in zebrafish. In order to do this, we exposed zebrafish embryos to 20 mM [0.12% v/v] ethanol from 2 to 9 dpf to model the effects of moderate prenatal ethanol (MPE) exposure. At 3 months old, adult fish were tested for appetitive and aversive learning, and for spatial alternation in a novel unconditioned y-maze protocol. We found that MPE did not affect appetitive or aversive learning, but exposed-fish showed a robust reduction in repetitive alternations in the y-maze when compared to age matched controls. This study confirms that moderate levels of ethanol exposure to developing embryos have subtle effects on spatial working memory in adulthood. Our data thus suggest that zebrafish may be a promising model system for studying the effects of alcohol on learning and decision-making, but also for developing treatments and interventions to reduce the negative effects of prenatal alcohol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app