Add like
Add dislike
Add to saved papers

Engineering of Human Mesenchymal Stem/Stromal Cells with Vascular Endothelial Growth Factor-Encoding Minicircles for Angiogenic Ex Vivo Gene Therapy.

Human Gene Therapy 2018 November 14
Peripheral artery disease (PAD) is a debilitating and prevalent condition characterized by blockage of the arteries, leading to limb amputation in more severe cases. Mesenchymal stem/stromal cells (MSC) are known to have intrinsic regenerative properties that can be potentiated by the introduction of pro-angiogenic genes such as the vascular endothelial growth factor (VEGF). Herein, the use of human bone marrow MSC transiently transfected with minicircles encoding for VEGF is proposed as an ex vivo gene therapy strategy to enhance angiogenesis in PAD patients. The VEGF gene was cloned in minicircle and conventional plasmid vectors and used to transfect bone marrow-derived MSC ex vivo. VEGF expression was evaluated both by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The number of VEGF transcripts following MSC transfection with minicircles increased 130-fold relative to the expression in non-transfected MSC, whereas for the plasmid (pVAX1)-based transfection, the increase was 50-fold. Compared to the VEGF basal levels secreted by MSC (11.1 ± 3.4 pg/1,000 cells/day), significantly higher values were detected by enzyme-linked immunosorbent assay after both minicircle and pVAX1 transfection (644.8 ± 82.5 and 508.3 ± 164.0 pg/1,000 cells/day, respectively). The VEGF overexpression improved the angiogenic potential of MSC in vitro, as confirmed by endothelial cell tube formation and cell migration assays, without affecting the expansion potential ex vivo, as well as multilineage differentiation capacity or immunophenotype of MSC. Although preclinical in vivo studies are required, these results suggest that minicircle-mediated VEGF gene delivery, combined with the unique properties of human MSC, could represent a promising ex vivo gene therapy approach for an improved angiogenesis in the context of PAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app