Add like
Add dislike
Add to saved papers

Investigation of the inhibition effect of arachidonic acid on the core structure of the HIV-1 gp41.

The gp41 transmembrane domain of the envelope glycoprotein of the human immunodeficiency virus (HIV) modulates the conformation of the viral envelope spike. During the HIV fusion process, C-terminal heptad repeat (CHR, C34) wrap antiparallel to the N-terminal heptad repeat (NHR, N36) helices to form a stable six-helix bundle (6-HB) core structure, which brings the viral and cell membranes into close proximity for fusion. Therefore, inhibiting the formation of 6-HB is considered to be a key activity of an effective HIV-1 fusion inhibitor. The level of arachidonic acid (AA) is increased in HIV infected patients. Our study provides a new insight into the functional role of AA during the formation of HIV-1 gp41 6-HB. Native polyacrylamide gel electrophoresis (N-PAGE), enzyme-linked-immunosorbent serologic assay (ELISA) and circular dichroism (CD) spectroscopy were used to investigate the inhibition of AA for the formation of 6-HB. Molecular docking technique was adopted to explore the underlying mechanism. HIV-1 JR-FL (R5 strain) Envelope was adopted to determine the inhibition effect of AA. AA is shown to interfere with the formation of α-helical complexes of N36 and C34 by N-PAGE, ELISA and CD spectroscopy. The isotherm titration microcalorimetry (ITC) results indicate there is a single class of binding site on N36. ΔH and ΔS are -12.43 kJ mol-1 and 70.07 J mol-1  K-1 , respectively, indicating hydrophobic interaction and electrostatic forces are the main acting forces. The molecular docking results manifest that AA interacts with the hydrophobic residues (Trp-571, Leu-568, Val-570 and Leu-576) and ionic interactions occur between Arg-579 and the -COOH of AA. The inhibitory activity of AA on HIV-1 JR-FL is quantified by 50% effective concentration (EC50 ) and 90% effective concentration (EC90 ), which are 31.42 ± 1.08 and 133.47 ± 18.10 μg mL-1 , respectively. All the results indicate that AA is able to inhibit the formation of 6-HB but cannot disrupt the preformed 6-HB. Therefore, AA is a potential inhibitor for the viral fusion/entry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app