JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differential effect of multiple kinesin motors on run length, force and microtubule binding rate.

Biophysical Chemistry 2018 November
The in vitro transport of cargo by motor proteins constitutes a model system to understand mechanisms of vesicle trafficking inside cells. Here we apply the classic bead assay with a short, stiff kinesin protein to test the effect of multiple motors on essential transport parameters: distance, force and microtubule binding rate. Measurements of unloaded run length show that the transition from single- to multiple-motor behavior can be characterized by the appearance of extended runs, in accordance with a recently proposed model that quantifies the probability of multiple-motor engagement. In this transition, application of mechanical load using optical tweezers allows us to register maximum force values above single kinesin levels (8 pN). Yet, averages of run length and maximum force undergo little change as the probability of multiple-motor participation increases. In contrast, the measured rate of bead binding to microtubules scales linearly with the average number of motors per bead. These observations suggest that multiple motors bound randomly to the same cargo mainly increase the probability of attachment of these cargoes to the cytoskeletal filament network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app