Add like
Add dislike
Add to saved papers

Influence of modified silica nanoparticles on phase behavior and structure properties of DPPC monolayers.

In this work, the effect of silica nanoparticles (NPs) adding to DPPC monolayer and the interaction between DPPC and silica nanoparticles are studied. Silica nanoparticles are prepared by microemulsion, meanwhile, DMDCS and APTES are used to modify silica NPs to get three types of modified silica NPs. These samples are mixed with DPPC to form mixed monolayer. By using the atomic force microscope (AFM), surface pressure-area and pressure-time isotherms, the effects of different hydrophilic-hydrophobic silica nanoparticles on the interface of lipid monolayer is analyzed. The data shows that the addition of silica nanoparticles changes the phase behavior, the collapse time and the structure of monolayer. Hydrophilic silica NPs decreases the collapse pressure and rigidity of DPPC monolayer, and makes monolayer collapse earlier since the steric hindrance leads to the resistance to compression, while hydrophobic silica NPs have less effect on monolayer in collapse pressure or rigidity but the texture of monolayer, and the addition of hydrophobic NPs causes the appearance of holes in the monolayer. We suppose that there are several possible locations of hydrophobic and hydrophilic silica nanoparticles in the air-water interface, which leads to different effects on the structure and rheological behavior of monolayer. This study can deepen the understanding on how nanoparticles affect human body since industries of nanoparticles on drug delivery, oil recovery and floatation are developing rapidly and getting more and more outside interest on a daily basis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app