Add like
Add dislike
Add to saved papers

A Comparison of the Inhibitory Effects of Anti-Cancer Drugs on Thioredoxin Reductase and Glutathione S-Transferase in Rat Liver.

BACKGROUND: While thioredoxin reductase (TrxR) plays an important role in regulation of the intracellular redox balance and various signalling pathways, glutathione S-transferase (GSTs) enzymes belong to the detoxification family that catalyse the conjugation of glutathione with various endogenous and xenobiotic electrophiles. Since TrxR and GSTs are overexpressed in many cancer cells, they have been identified as potential targets to develop chemotherapeutic strategies.

METHOD: The mitochondrial TrxR (TrxR2) enzyme and the cytosolic GST enzyme was purified from rat liver via affinity chromatography. After the purification, the in vitro inhibition effects of some anticancer drugs (cisplatin, calcium folinate, carboplatin, epirubicin hydrochloride, doxorubicin hydrochloride, paclitaxel, etoposide, fluorouracil, and methotrexate) were investigated on both enzymes. Since only methotrexate inhibits both enzymes among all the anticancer drugs, a molecular docking study was performed to determine the binding site and the binding affinity of methotrexate to the enzymes.

RESULTS: Firstly, TrxR2 and GST were found to have a specific activity of 0.436, 1765 EU/mg proteins with a yield of 39.20%, 31.28% and 207.6, 3516.6 of purification fold, respectively. While TrxR2 was strongly inhibited by all of the anticancer drugs, GST was not inhibited by any of the anticancer drugs except methotrexate.

CONCLUSION: Both enzymes were inhibited by only methotrexate in rat liver, and methotrexate was well placed in the active sites of both proteins. Therefore, it may be argued that methotrexate may be a more effective anticancer drug than all other drugs used in this study against the multi drug resistance that will occur during chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app