Add like
Add dislike
Add to saved papers

Studying the fragmentation mechanism of selected components present in crude oil by collision-induced dissociation mass spectrometry.

RATIONALE: Structural characterization of individual compounds in very complex mixtures is difficult to achieve. One important step in structural elucidation is understanding the mass spectrometric fragmentation mechanisms of the compounds present in such mixtures. Here, different individual compounds presumed to be present in a complex crude oil mixture have been synthesized and structurally characterized by tandem mass spectrometry (MS/MS) studies.

METHODS: Model compounds with different aromatic cores and various substitutents were synthesized. Major effort has been put into producing isomerically pure compounds to better understand the fragmentation pattern. Each synthesized compound has been subjected to MSn studies using either a triple quadrupole or a linear ion trap mass spectrometer with electrospray or atmospheric pressure photoionization. The results are used to analyze individual compounds from a complex vacuum gas oil (VGO).

RESULTS: The synthesized compounds and a chromatographically simplified vacuum gas oil were used for structural analysis. The major fragmentation mechanism is the benzylic cleavage of the aliphatic side chain. Each side chain can be separately removed from the aromatic core by using MSn methods. At the end of a series of fragmentations, the base aromatic core structure remains and can be chararcterized.

CONCLUSIONS: By defining the fragmentation mechanism in complex oil samples it was possible to structurally characterize individual compounds present in a chromatographically simplified VGO. The compounds consist of an aromatic core with aliphatic side chains. Cleavage of all side chains can be achieved by MSn measurements, allowing characterization of the remaining core structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app