Add like
Add dislike
Add to saved papers

Quantitative proteomic analysis of mitochondrial proteins differentially expressed between small cell lung cancer cells and normal human bronchial epithelial cells.

Thoracic Cancer 2018 November
BACKGROUND: Small cell lung cancer (SCLC) is highly aggressive and is associated with a dismal prognosis. However, there are no clinically recognized biomarkers for early diagnosis. In this study, we used quantitative proteomics to build differential mitochondrial protein profiles that may be used for early diagnosis and investigated the pathogenesis of lung cancer.

METHODS: We cultured SCLC cells (NCI-H446) and normal human bronchial epithelial cells (16-HBE); mitochondria were extracted and purified using differential and Percoll density gradient centrifugation. Subsequently, we used Western blot analysis to validate mitochondrial purity and labeled proteins/peptides from NCI-H446 and 16-HBE cells using relative and absolute quantification of ectopic tags. We then analyzed mixed samples and identified proteins using two-dimensional liquid chromatography-tandem mass spectrometry. Additionally, we performed subsequent bioinformatic proteome analyses using the programs ExPASy, GOA, and STRING. Finally, the relationship between ornithine aminotransferase expression and clinicopathological features in lung cancer patients was evaluated using immunohistochemistry.

RESULTS: One hundred and fifty-three mitochondrial proteins were differentially expressed between 16-HBE and NCI-H446 cells. The expression of 30 proteins between 16-HBE and NCI-H446 cells increased more than 1.3-fold. The upregulation of ornithine aminotransferase was associated with pathological grade and clinical tumor node metastasis stage.

CONCLUSION: Our experiment represented a promising method for building differential mitochondrial protein profiles between NCI-H446 and 16-HBE cells. Such analysis may also help to identify novel biomarkers of lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app