Add like
Add dislike
Add to saved papers

Assessment of microsatellite instability for screening bladder cancer in high-risk population.

Aims: This study aims to determine the diagnostic efficacy of microsatellite markers for screening bladder cancer in population at high risk.

Materials and Methods: A population of 200 people was screened for bladder cancer using a set of microsatellite markers. Urine samples were obtained from four different types of population groups - Group 1 (healthy population group), Group 2 (current smokers with a smoking history of more than 10 years), Group 3 (bladder cancer group), and Group 4 (bladder cancer group who were former smokers with a history of more than 10 years). Polymerase chain reaction (PCR) was performed to amplify microsatellite sequences at D9S63, D9S156, and D9S283. PCR products were separated on 1.8% agarose gel and were scanned using ultraviolet transilluminator.

Results: In Group 2 (high-risk population group, mainly current smokers with a history of more than 10 years), microsatellite alterations were found in 36 out of 50 people. We observed microsatellite alterations in 38 out of 50 people in Group 3 (bladder cancer group) and in 39 out of 50 people in Group 4 (bladder cancer group, mainly former smokers with a history of more than 10 years). The sensitivity of this test in Group 2, Group 3, and Group 4 was found to be 72%, 76% and 78%, respectively. The specificity of this test in each group was found to be 90%.

Conclusion: Using these set of microsatellite markers, medium sensitivity and high specificity were reported for this test. The current findings suggest that a set of microsatellite markers (D9S63, D9S156, and D9S283) can be used to detect bladder cancer in high-risk population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app