Add like
Add dislike
Add to saved papers

Acrylamide Defects the Expression Pattern of the Circadian Clock and Mitochondrial Dynamics in C57BL/6J Mice Liver and HepG2 Cells.

Circadian rhythm helps organisms adapt to their environment and control a variety of physiological and metabolic processes. Acrylamide is a toxic compound that can be produced during food processing. The aim of this research is to investigate whether the circadian clock is involved in the toxicity mechanisms of acrylamide in mice liver. Our results revealed that acrylamide markedly induced circadian gene oscillation disorder and blocked circadian-related protein in mice liver and HepG2 cells. Simultaneously, the balance of the daily oscillation of the antioxidant enzymes was impeded under acrylamide treatment. Furthermore, acrylamide treatment elevated the mitochondrial dynamic gene expressions and influenced the mitochondrial morphology at the night phase. Acrylamide blocked circadian protein expression via repressing the phosphorylation of AKT or inducing oxidative stress. Taken together, our work reveals acrylamide as a clock-repressing compound generated through the Maillard browning reaction in certain foods that may possess a toxic effect via circadian clock mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app