Add like
Add dislike
Add to saved papers

Comparison of the Role of D1- and D2-Like Receptors in the CA1 Region of the Hippocampus in the Reinstatement Induced by a Subthreshold Dose of Morphine and Forced Swim Stress in Extinguished Morphine-CPP in Rats.

Reward-seeking and relapse to drug use are two characteristics of addiction and reports have indicated the role of hippocampal structures in reward learning. To find the best ways of treatment, the understanding of the neurobiological mechanisms of reward and its involved factors is a must. For this reason, in the present study, we aimed to investigate the role of D1- and D2-like dopamine receptors and compared their activities in the CA1 region, focusing on the reinstatement induced by forced swim stress (FSS) or the combination of FSS and a subthreshold dose of morphine in extinguished morphine-CPP in rats. The rats were bilaterally implanted by two separate cannulas into the CA1 region. The animals received different doses of SCH23390 or sulpiride (0.5, 2, and 4 µg/0.5 µl vehicle/side) into the CA1 region on the reinstatement day and were tested for FSS-induced reinstatement or the combination of FSS and a subthreshold dose of morphine in separate groups. Our findings indicated that the D1- and D2-like receptor antagonists attenuated the reinstatement induced by the combination of FSS and the subthreshold dose of morphine. The behavioral results were more prominent in the groups of animals that received SCH23390 as compared to sulpiride. The data may suggest a role for the dopamine receptors in the CA1 region in relapse to drugs of abuse, which may be induced by exposure to a stressor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app