Add like
Add dislike
Add to saved papers

A Novel Mechanism of Doxorubicin Resistance and Tumorigenesis Mediated by MicroRNA-501-5p-Suppressed BLID.

Doxorubicin is a widely used anthracycline-based anti-tumor agent for both solid and liquid tumors. Mounting evidence has demonstrated that microRNAs (miRNAs) are involved in chemoresistance and tumorigenesis. However, the roles of microRNA-501-5p (miR-501) in doxorubicin resistance and gastric cancer cell proliferation and invasion are still not fully understood. In this study, we identified that BLID (BH3-like motif-containing protein, cell death inducer) was directly regulated by miR-501 at the post-transcriptional level in multiple gastric cancer cell lines. Endogenous miR-501 was higher, whereas BLID was lower, in doxorubicin-resistant gastric cancer SGC7901/ADR cells compared with their parental SGC7901 cells. miR-501 suppressed gastric cancer cell apoptosis, induced resistance to doxorubicin, and enhanced cell proliferation, migration, and invasion. Subcutaneous injection of miR-501 lentivirus-infected SGC7901 cells resulted in rapid growth of xenograft tumors and resistance to doxorubicin treatment, unlike injection of negative miRNA lentivirus-infected SGC7901 cells. This is achieved at least partially by directly targeting BLID and subsequent inactivation of caspase-9 and caspase-3 and phosphorylation of Akt. Taken together, miR-501 induces doxorubicin resistance and enhances the tumorigenesis of gastric cancer cells by suppressing BLID. miR-501 might be a potential target for doxorubicin resistance and gastric cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app