Add like
Add dislike
Add to saved papers

Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway in a rat model of depression.

Chronic stress can provoke depressive-like behaviors through activation of inflammation and apoptosis, leading to a reduction of neurons. Antidepressant therapy may contribute to inhibiting inflammation responses and have neuroprotective effects. Baicalin (BA) has an antidepressant effect in the chronic unpredictable mild stress (CUMS) animal model and exerts anti-inflammation, anti-apoptosis, as well as neuroprotective effects in many central nervous system (CNS)-related diseases. But the effects of BA on neuroprotection, apoptosis, and neuroinflammation and the potential mechanisms in depression are unclear. Here, we focused on examining the therapeutic effects of BA in CUMS-induced depression rats and investigating the molecular mechanisms. Results showed that administration of BA improved depressive-like behaviors and significantly increased the levels of doublecortin (DCX), Neuron-specific enolase (NSE), and Brain-derived neurotrophic factor (BDNF) in hippocampus. Furthermore, administration of BA increased the cell survival by reducing the level of malondialdehyde (MDA) and increasing the level of superoxide dismutase (SOD). Finally, administration of BA significantly decreased CUMS-induced apoptosis and inflammatory cytokines (caspase-1 and IL-1β) in hippocampus. These responses were mediated by Glycogen synthase kinase-3 (GSK3) β/Nuclear factor-κB (NF-κB)/Nucleotide-binding domain, leucine-rich repeat, pyrin domain containing protein 3 (NLRP3) signal pathway. Taken together, these results indicate that BA could promote neuronal maturation and rescue neurons from apoptosis via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway that is known to be associated with inflammation, thus exerting neuroprotective effects and preventing CUMS-induced depressive-like behaviors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app