Add like
Add dislike
Add to saved papers

miR-217 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitors by targeting pro-oncogenic anterior gradient 2.

Experimental Hematology 2018 September 6
BCR-ABL1-independent mechanisms had been thought to mediate drug resistance to tyrosine kinase inhibitors (TKIs) in patients with chronic myelogenous leukemia (CML). The pro-oncogenic anterior gradient 2 (AGR2) mediates drug resistance of cancer cells. In this study, we observed an increased level of AGR2 in TKI-resistant CML cells. Silence of AGR2 in dasatinib-resistant K562 (K562DR) cells led to restored sensitivity to dasatinib both in vitro and in vivo. Exposure to dasatinib induced upregulation of AGR2 in K562 cells, which indicated a probable treatment-related drug resistance. We further investigated the potential interaction between microRNA (miRNA) and AGR2 in K562DR cells and found that downregulation of miR-217 was associated with overexpression of AGR2 in K562DR cells. Luciferase reporter assay identified that miR-217 negatively regulated expression of AGR2 through binding the 3'-untranslated region of AGR2. Hypermethylation of the CpG island on the promoter region of the MIR217 gene is a probable reason for the downregulation of miR-217 in dasatinib-treated K562 cells. Forced expression of miR-217 led to decreased expression of AGR2 as well as compromised TKI-resistant potential of K562DR cells. Similarly, overexpression of miR-217 resensitized K562DR cells to dasatinib treatment in a murine xenograft transplantation model. TKI treatment-induced drug resistance is correlated with a decrease of miR-217 and upregulation of AGR2. The miR-217/AGR2 interaction might be a potential therapeutic target in treating CML patients with TKI resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app