Add like
Add dislike
Add to saved papers

Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation.

Scientific Reports 2018 September 8
A facile and eco-friendly strategy is described for the synthesis of ZnS-ZnO/graphene heterostructured nano-photocatalysts for the first time. This solvent-free and technologically scalable method involves solid-state mixing of graphite oxide (GO), Zn salt and surfeit yet non-toxic elemental sulfur using ball-milling followed by thermal annealing. The as-formed hybrids are composed of uniformly distributed in-situ formed ZnS-ZnO nanoparticles simultaneously within the thermally reduced GO (graphene) matrix. A series of hybrid compositions with varying content of ZnS/ZnO and graphene were prepared and thoroughly characterized. Further, the effect of heterostructure composition on the photocatalytic properties was investigated under visible-light illumination. The synergistic ZnS-ZnO/graphene hybridization promoted the band-gap narrowing compared to the pristine ZnS nanoparticles. The ZnS:ZnO composition was controlled by graphite oxide under thermal treatment and observed to be a crucial factor in enhancement of photocatalytic activity. As a proof of concept, the phase optimized and surface enhanced ZnS-ZnO/graphene nano-photocatalysts was tested towards visible light driven photocatalytic degradation of environmentally harmful organic dyes and toxic phenol molecules from aqueous media. The presented cost-effective strategy provides high potential in large-scale production of heterostructured nano-photocatalysts for environmental remediation and photocatalytic greener production of hydrogen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app