Add like
Add dislike
Add to saved papers

Cationic Branched Polyethylenimine (BPEI) Disables Antibiotic Resistance in Methicillin-Resistant Staphylococcus epidermidis (MRSE).

ChemMedChem 2018 September 8
Staphylococcus epidermidis is one of the most prevalent prokaryotic species on human skin and mucosal membranes that constitute the commensal flora. S. epidermidis has become one of the most common causes of primary bacteremia. Infections are difficult to diagnose because the pathogen has natural niches on human skin and the ability to adhere to inanimate surfaces via biofilms. Alarmingly, S. epidermidis has acquired resistance to many antibiotics, which presents a danger to human health. Known as methicillin-resistant S. epidermidis (MRSE), most clinical isolates of MRSE in North America exhibit β-lactam resistance primarily due to the presence of mecA, a gene that bestows β-lactam antibiotic resistance in a manner similar to methicillin-resistant Staphylococcus aureus (MRSA). MecA encodes for expression of penicillin-binding protein 2a (PBP2a), which is absent in β-lactam susceptible strains of S. epidermidis. We can disable this resistance factor in MRSE with 600-Da branched polyethylenimine (BPEI). Cationic BPEI targets anionic wall teichoic acid (WTA), an essential cofactor for proper functioning of PBP2a. We found that BPEI synergizes the activity of β-lactam antibiotics against MRSE. Growth curves suggest that the combination of BPEI and oxacillin is bactericidal. Electron micrographs indicate abnormalities in the cellular septa and cell walls of treated samples. Therefore, first-line clinical treatments can be effective against MRSE when used in combination with BPEI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app