Add like
Add dislike
Add to saved papers

Quantitative lipidomic analysis of mouse lung during postnatal development by electrospray ionization tandem mass spectrometry.

Lipids play very important roles in lung biology, mainly reducing the alveolar surface tension at the air-liquid interface thereby preventing end-expiratory collapse of the alveoli. In the present study we performed an extensive quantitative lipidomic analysis of mouse lung to provide the i) total lipid quantity, ii) distribution pattern of the major lipid classes, iii) composition of individual lipid species and iv) glycerophospholipid distribution pattern according to carbon chain length (total number of carbon atoms) and degree of unsaturation (total number of double bonds). We analysed and quantified 160 glycerophospholipid species, 24 sphingolipid species, 18 cholesteryl esters and cholesterol from lungs of a) newborn (P1), b) 15-day-old (P15) and c) 12-week-old adult mice (P84) to understand the changes occurring during postnatal pulmonary development. Our results revealed an increase in total lipid quantity, correlation of lipid class distribution in lung tissue and significant changes in the individual lipid species composition during postnatal lung development. Interestingly, we observed significant stage-specific alterations during this process. Especially, P1 lungs showed high content of monounsaturated lipid species; P15 lungs exhibited myristic and palmitic acid containing lipid species, whereas adult lungs were enriched with polyunsaturated lipid species. Taken together, our study provides an extensive quantitative lipidome of the postnatal mouse lung development, which may serve as a reference for a better understanding of lipid alterations and their functions in lung development and respiratory diseases associated with lipids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app